An enhanced genetic algorithm with simulated annealing for job-shop scheduling
نویسندگان
چکیده
The Job-Shop Scheduling Problem (JSSP) is one of the most difficult problems, as it is classified as NP-Hard problem. The main objective of the JSSP is to find a schedule of operations that can minimize the maximum completion time (called makespan) that is the completed time of carrying total operations out in the schedule for n jobs and m machines. In many cases, the combination of goals and resources exponentially increases the search space, and thus the generation of consistently good scheduling is particularly difficult, because we have a very large combinatorial search space and precedence constraints between operations. Exact methods such as the branch and bound method and dynamic programming take considerable computing time to obtain the optimum solution. In order to overcome this difficulty, it is more sensible to obtain a good solution near the optimal one. Stochastic search techniques such as evolutionary algorithms can be used to find a good solution. In this paper we proposed a new method for solving job-shop scheduling problem using hybrid Genetic Algorithm (GA) with Simulated Annealing (SA). This method introduces a reasonable combination of local search and global search for solving JSSP.
منابع مشابه
A Simulated Annealing Algorithm for Multi Objective Flexible Job Shop Scheduling with Overlapping in Operations
In this paper, we considered solving approaches to flexible job shop problems. Makespan is not a good evaluation criterion with overlapping in operations assumption. Accordingly, in addition to makespan, we used total machine work loading time and critical machine work loading time as evaluation criteria. As overlapping in operations is a practical assumption in chemical, petrochemical, and gla...
متن کاملAn algorithm for multi-objective job shop scheduling problem
Scheduling for job shop is very important in both fields of production management and combinatorial op-timization. However, it is quite difficult to achieve an optimal solution to this problem with traditional opti-mization approaches owing to the high computational complexity. The combination of several optimization criteria induces additional complexity and new problems. In this paper, we pro...
متن کاملA New Approach in Job Shop Scheduling: Overlapping Operation
In this paper, a new approach to overlapping operations in job shop scheduling is presented. In many job shops, a customer demand can be met in more than one way for each job, where demand determines the quantity of each finished job ordered by a customer. In each job, embedded operations can be performed due to overlapping considerations in which each operation may be overlapped with the other...
متن کاملTrain Scheduling Problem with Consideration of Praying Constraint as an Application of Job Shop Scheduling Problem
The present paper extends the idea of job shop scheduling problem with resting constraints to the train scheduling problem with the Muslim praying considerations. For this purpose, after proposing the new mathematical model, a heuristic algorithm based on the Electromagnetism-Like algorithm (EM) which is well adjusted to scheduling problems is employed to solve the large-size practical cases. T...
متن کاملA cloud-based simulated annealing algorithm for order acceptance problem with weighted tardiness penalties in permutation flow shop scheduling
Make-to-order is a production strategy in which manufacturing starts only after a customer's order is received; in other words, it is a pull-type supply chain operation since manufacturing is carried out as soon as the demand is confirmed. This paper studies the order acceptance problem with weighted tardiness penalties in permutation flow shop scheduling with MTO production strategy, the objec...
متن کاملThree Hybrid Metaheuristic Algorithms for Stochastic Flexible Flow Shop Scheduling Problem with Preventive Maintenance and Budget Constraint
Stochastic flexible flow shop scheduling problem (SFFSSP) is one the main focus of researchers due to the complexity arises from inherent uncertainties and also the difficulty of solving such NP-hard problems. Conventionally, in such problems each machine’s job process time may encounter uncertainty due to their relevant random behaviour. In order to examine such problems more realistically, fi...
متن کامل